资源类型

期刊论文 320

会议视频 3

年份

2023 41

2022 40

2021 29

2020 31

2019 19

2018 22

2017 14

2016 12

2015 17

2014 12

2013 14

2012 11

2011 7

2010 5

2009 9

2008 6

2007 11

2006 1

2005 2

2004 2

展开 ︾

关键词

重金属 3

二氧化碳 2

固体氧化物燃料电池 2

带传动 2

显微硬度 2

有色金属工业 2

重金属废水 2

金属带 2

2035 1

Deep metal mining 1

EDI 1

Mitigation 1

Monitoring 1

PEDOT:PSS 1

Rockburst 1

Warning 1

ZEBRA 电池 1

cellular automaton模型 1

三峡工程 1

展开 ︾

检索范围:

排序: 展示方式:

Review on research and application of mesoporous transitional metal oxides in water treatment

Minghao SUI, Lei SHE

《环境科学与工程前沿(英文)》 2013年 第7卷 第6期   页码 795-802 doi: 10.1007/s11783-013-0521-4

摘要: This paper reviews the application of mesoporous transitional metal oxides in water treatment on basis of the catalysis and adsorption. Mesoporous transitional metal oxides are characterized by their intrinsic features, such as a high surface area, a highly ordered array of unidimensional pores with a very narrow pore size distribution, and highly dispersed active sites. Finally, the suggestions of further study on application are proposed.

关键词: mesoporous materials     transitional metal oxides     catalysis     adsorption     water treatment    

Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental

Zhen MA, Bei ZHOU, Yu REN

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 341-355 doi: 10.1007/s11783-012-0472-1

摘要: Mesoporous silicas such as MCM-41 and SBA-15 possess high surface areas, ordered nanopores, and excellent thermal stability, and have been often used as catalyst supports. Although mesoporous metal oxides have lower surface areas compared to mesoporous silicas, they generally have more diversified functionalities. Mesoporous metal oxides can be synthesized via a soft-templating or hard-templating approach, and these materials have recently found some applications in environmental catalysis, such as CO oxidation, N O decomposition, and elimination of organic pollutants. In this review, we summarize the synthesis of mesoporous transition metal oxides using mesoporous silicas as hard templates, highlight the application of these materials in environmental catalysis, and furnish some prospects for future development.

关键词: mesoporous materials     silica     metal oxide     hard-templating     environmental catalysis    

Fluoride ions adsorption from water by CaCO enhanced Mn–Fe mixed metal oxides

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 236-248 doi: 10.1007/s11705-022-2193-8

摘要: Novel CaCO3-enhanced Mn–Fe mixed metal oxides (CMFC) were successfully prepared for the first time by a simple-green hydrothermal strategy without any surfactant or template combined with calcination process. These oxides were then employed as an adsorbent for adsorptive removal of excess fluoride ions. The adsorbent was characterized by SEM, XPS, XRD, FTIR, and BET analysis techniques. The adsorption property of CMFC toward fluoride ion was analyzed by batch experiments. In fact, CMFC exhibited adsorption capacity of 227.3 mg∙g‒1 toward fluoride ion. Results showed that ion exchange, electrostatic attraction and chemical adsorption were the main mechanism for the adhesion of large amount of fluoride ion on the CMFC surface, and the high adsorption capacity responded to the low pH of the adsorption system. When the fluoride ion concentration was increased from 20 to 200 mg∙L‒1, Langmuir model was more in line with experimental results. The change of fluoride ion adsorption with respect to time was accurately described by pseudo-second-order kinetics. After five cycles of use, the adsorbent still maintains a performance of 70.6% of efficiency, compared to the fresh adsorbent. Therefore, this material may act as a potential candidate for adsorbent with broad range of application prospects.

关键词: mesoporous materials     metal oxides     fluoride ion     adsorption mechanism    

Application of metal oxides-based nanofluids in PV/T systems: a review

《能源前沿(英文)》 2022年 第16卷 第3期   页码 397-428 doi: 10.1007/s11708-021-0758-8

摘要: Having the wide application of metal oxides in energy technologies, in recent years, many researchers tried to increase the performance of the PV/T system by using metal oxide-based nanofluids (NFs) as coolants or optical filters or both at the same time. This paper summarizes recent research activities on various metal oxides (Al2O3, TiO2, SiO2, Fe3O4, CuO, ZnO, MgO)-based NFs performance in the PV/T system regarding different significant parameters, e.g., thermal conductivity, volume fraction, mass flowrate, electrical, thermal and overall efficiency, etc. By conducting a comparative study among the metal oxide-based NFs, Al2O3/SiO2-water NFs are mostly used to achieve maximum performance. The Al2O3-water NF has a prominent heat transfer feature with a maximum electrical efficiency of 17%, and a maximum temperature reduction of PV module of up to 36.9°C can be achieved by using the Al2O3-water NF as a coolant. Additionally, studies suggest that the PV cell’s efficiency of up to 30% can be enhanced by using a solar tracking system. Besides, TiO2-water NFs have been proved to have the highest thermal efficiency of 86% in the PV/T system, but TiO2 nanoparticles could be hazardous for human health. As a spectral filter, SiO2-water NF at a size of 5 nm and a volume fraction of 2% seems to be very favorable for PV/T systems. Studies show that the combined use of NFs as coolants and spectral filters in the PV/T system could provide a higher overall efficiency at a cheaper rate. Finally, the opportunities and challenges of using NFs in PV/T systems are also discussed.

关键词: metal oxide     nanofluids (NFs)     nanoparticles (NPs)     optical filter     PV/T systems     solar energy    

Promotion of transition metal oxides on the NH

Weiman Li, Haidi Liu, Yunfa Chen

《环境科学与工程前沿(英文)》 2017年 第11卷 第2期 doi: 10.1007/s11783-017-0914-x

摘要: Manganese and chromium oxides promote the NH -SCR activity of Zr-Ce mixed oxide. Cr-Zr-Ce mixed oxide exhibited>80% NO conversion at a wide temperature window. More acid sites and higher reducibility may responsible for the high SCR ability. Chromium oxide and manganese oxide promoted ZrO -CeO catalysts were prepared by a homogeneous precipitation method for the selective catalytic reduction of NO with NH . A series of characterization including X-ray diffraction (XRD), high-resolution transmission electron microscope (HR-TEM), Brunauer–Emmett–Teller (BET) surface area analysis, H temperature-programmed reduction (H -TPR), and X-ray photoelectron spectroscopy (XPS) were used to evaluate the influence of the physicochemical properties on NH -SCR activity. Cr-Zr-Ce and Mn-Zr-Ce catalysts are much more active than ZrO -CeO binary oxide for the low temperature NH -SCR, mainly because of the high specific surface area, more surface oxygen species, improved reducibility derived from synergistic effect among different elements. Mn-Zr-Ce catalyst exhibited high tolerance to SO and H O. Cr-Zr-Ce mixed oxide exhibited>80% NO conversion at a wide temperature window of 100°C–300°C. DRIFT studies showed that the addition of Cr is beneficial to the formation of Bronsted acid sites and prevents the formation of stable nitrate species because of the presence of Cr . The present mixed oxide can be a candidate for the low temperature abatement of NO .

关键词: NH3-selective catalytic reduction     NOx     Low temperature     Cr-Zr-Ce    

Modified iron-molybdate catalysts with various metal oxides by a mechanochemical method: enhanced formaldehyde

Xue Liu, Lingtao Kong, Shengtao Xu, Chaofan Liu, Fengyun Ma

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1099-1110 doi: 10.1007/s11705-020-2008-8

摘要: A mechanochemical method was employed to prepare modified iron molybdate catalysts with various metal salts as precursors. The physicochemical properties of the iron molybdate catalysts were characterized, and their performances in catalyzing the reaction from methanol to formaldehyde (HCHO) were evaluated. Iron molybdate catalysts doped with Co(NO ) ·6H O and Al(NO ) ·9H O resulted in high HCHO yields. Compared with a commercial catalyst, the HCHO yields in the reaction with the modified catalyst at an optimal Co/Mo molar ratio reached 97.37%. According to chemical state analysis, the formation of CoO and the efficient decrease in the MoO sublimation rate could be important factors enhancing the HCHO yield in reactions catalyzed with iron molybdate doped with different Co/Mo mole ratios.

关键词: iron molybdate catalyst     metal oxides     methanol to formaldehyde     Co/Mo ratio     formaldehyde yield    

Metal-organic framework loaded manganese oxides as efficient catalysts for low-temperature selective

Minhua Zhang, Baojuan Huang, Haoxi Jiang, Yifei Chen

《化学科学与工程前沿(英文)》 2017年 第11卷 第4期   页码 594-602 doi: 10.1007/s11705-017-1668-5

摘要: A mild deposition method was used to fabricate Mn-based catalysts on a UiO-66 carrier for the selective catalytic reduction of NO by NH (NH -SCR). The catalyst with 8.5 wt-% MnO loading had the highest catalytic activity for NH -SCR with a wide temperature window (100–290 °C) for 90% NO conversion. Characterization of the prepared MnO /UiO-66 catalysts showed that the catalysts had the crystal structure and porosity of the UiO-66 carrier and that the manganese particles were well-distributed on the surface of the catalyst. X-ray photoelectron spectroscopy analysis showed that there are strong interactions between the MnO and the Zr oxide secondary building units of the UiO-66 which has a positive effect on the catalytic activity. The 8.5 wt-% MnO catalyst maintained excellent activity during a 24-h stability test and exhibited good resistance to SO poisoning.

关键词: metal-organic framework     selective catalytic reduction     manganese oxides     deNOx     SO2 resistance    

Selective targeted adsorption and inactivation of antibiotic-resistant bacteria by Cr-loaded mixed metaloxides

《环境科学与工程前沿(英文)》 2022年 第16卷 第6期 doi: 10.1007/s11783-021-1502-7

摘要:

• LDHs and MMOs was synthesized by ultrasound-assisted one-step co-precipitation.

关键词: Heavy metal adsorption     Magnetic hydrotalcite     ARBs removal     Cr(VI)-MMOs combined antibacterial activity    

Expression and clinical implication of PRL-1 and PRL-3 in transitional cell carcinoma of bladder

Bin HAO, Changwei LIU, Huixiang LI

《医学前沿(英文)》 2009年 第3卷 第2期   页码 197-203 doi: 10.1007/s11684-009-0036-3

摘要: The mRNA and protein expression of phosphatase of regenerating liver 1 (PRL-1) and phosphatase of regenerating liver 3 (PRL-3) in transitional cell carcinoma of bladder (BTCC) and normal epithelia of bladder was investigated, and the relationship between the BTCC and pathological changes was clarified. The expression of PRL-1 and PRL-3 mRNA was detected by using reverse transcription polymerase chain reaction (RT-PCR) in 30 cases of BTCC and 10 cases of normal bladder, and the expression of PRL-1 and PRL-3 protein was checked by using immunohistochemistry in 30 cases of BTCC and 15 cases of normal bladder. The expression levels of PRL-1 and PRL-3 mRNA and protein were higher in BTCC than those in normal bladder epithelia ( <0.05). The increased expression of PRL-1 and PRL-3 mRNA and protein was detectable in deep invasion and metastasis of BTCC ( <0.05). There was no correlation between the expression of PRL-1 and PRL-3 and gender, age or recurrence of BTCC (all >0.05). A significantly positive correlation was found between PRL-1 and PRL-3 in BTCC ( <0.05). PRL-1 and PRL-3 are expressed consistently and may contribute to the growth, differentiation, invasion and metastasis of BTCC.

关键词: transitional cell carcinoma of bladder     phosphatase of regenerating liver 1     phosphatase of regenerating liver 3     reverse transcription polymerase chain reaction     immunohistochemistry    

Development of combined transitional pavement structure for urban tram track-road grade crossings

《结构与土木工程前沿(英文)》   页码 1199-1210 doi: 10.1007/s11709-023-0949-y

摘要: The grade crossings and adjacent pavements of urban trams are generally subjected to complex load conditions and are susceptible to damage. Therefore, in this study, a novel pavement structure between tram tracks and roads constructed using polyurethane (PU) elastic concrete and ultra-high-performance concrete (UHPC), referred to as a track-road transitional pavement (TRTP), is proposed. Subsequently, its performance and feasibility are evaluated using experimental and numerical methods. First, the mechanical properties of the PU elastic concrete are evaluated. The performance of the proposed structure is investigated using a three-dimensional finite element model, where vehicle-induced dynamic and static loads are considered. The results show that PU elastic concrete and the proposed combined TRTP are applicable and functioned as intended. Additionally, the PU elastic concrete achieved sufficient performance. The recommended width of the TRTP is approximately 50 mm. Meanwhile, the application of UHPC under a PU elastic concrete layer significantly reduces vertical deformation. Results of numerical calculations confirmed the high structural performance and feasibility of the proposed TRTP. Finally, material performance standards are recommended to provide guidance for pavement design and the construction of tram-grade crossings in the future.

关键词: urban tram track     grade crossing     combined track-road transitional pavement     polyurethane elastic concrete     finite element method    

Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review

《化学科学与工程前沿(英文)》 2023年 第17卷 第11期   页码 1649-1676 doi: 10.1007/s11705-023-2324-x

摘要: With the rapid development of industry, volatile organic compounds (VOCs) are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health. Catalytic combustion is the most popular technology used for the removal of VOCs as it can be adapted to different organic emissions under mild conditions. This review first introduces the hazards of VOCs, their treatment technologies, and summarizes the treatment mechanism issues. Next, the characteristics and catalytic performance of perovskite oxides as catalysts for VOC removal are expounded, with a special focus on lattice distortions and surface defects caused by metal doping and surface modifications, and on the treatment of different VOCs. The challenges and the prospects regarding the design of perovskite oxides catalysts for the catalytic combustion of VOCs are also discussed. This review provides a reference base for improving the performance of perovskite catalysts to treat VOCs.

关键词: perovskite oxides     volatile organic compounds     catalytic combustion     reaction mechanism    

Robust optimization of the billet for isothermal local loading transitional region of a Ti-alloy rib-web

Ke WEI, Xiaoguang FAN, Mei ZHAN, Miao MENG

《机械工程前沿(英文)》 2018年 第13卷 第3期   页码 376-384 doi: 10.1007/s11465-018-0500-3

摘要:

Billet optimization can greatly improve the forming quality of the transitional region in the isothermal local loading forming (ILLF) of large-scale Ti-alloy rib-web components. However, the final quality of the transitional region may be deteriorated by uncontrollable factors, such as the manufacturing tolerance of the preforming billet, fluctuation of the stroke length, and friction factor. Thus, a dual-response surface method (RSM)-based robust optimization of the billet was proposed to address the uncontrollable factors in transitional region of the ILLF. Given that the die underfilling and folding defect are two key factors that influence the forming quality of the transitional region, minimizing the mean and standard deviation of the die underfilling rate and avoiding folding defect were defined as the objective function and constraint condition in robust optimization. Then, the cross array design was constructed, a dual-RSM model was established for the mean and standard deviation of the die underfilling rate by considering the size parameters of the billet and uncontrollable factors. Subsequently, an optimum solution was derived to achieve the robust optimization of the billet. A case study on robust optimization was conducted. Good results were attained for improving the die filling and avoiding folding defect, suggesting that the robust optimization of the billet in the transitional region of the ILLF was efficient and reliable.

关键词: isothermal local loading forming     rib-web component     transitional region     robust optimization     dual response surface method    

Multivalent manganese oxides with high electrocatalytic activity for oxygen reduction reaction

Xiangfeng Peng, Zhenhai Wang, Zhao Wang, Yunxiang Pan

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 790-797 doi: 10.1007/s11705-018-1706-y

摘要: A noble-metal-free catalyst based on both Mn O and MnO was prepared by using the dielectric barrier discharge technique at moderate temperature. The prepared catalyst shows a higher electrocatalytic activity towards the oxygen reduction reaction than the catalyst prepared by using the traditional calcination process. The enhanced activity could be due to the coexistence of manganese ions with different valences, the higher oxygen adsorption capacity, and the suppressed aggregation of the catalyst nanoparticles at moderate temperature. The present work would open a new way to prepare low-cost and noble-metal-free catalysts at moderate temperature for more efficient electrocatalysis.

关键词: oxygen reduction reaction     manganese oxides     mixed valences of manganese     oxygen adsorption     dielectric barrier discharge    

Redox reactions of iron and manganese oxides in complex systems

Jianzhi Huang, Huichun Zhang

《环境科学与工程前沿(英文)》 2020年 第14卷 第5期 doi: 10.1007/s11783-020-1255-8

摘要: • Mechanisms of redox reactions of Fe- and Mn-oxides were discussed. • Oxidative reactions of Mn- and Fe-oxides in complex systems were reviewed. • Reductive reaction of Fe(II)/iron oxides in complex systems was examined. • Future research on examining the redox reactivity in complex systems was suggested. Conspectus Redox reactions of Fe- and Mn-oxides play important roles in the fate and transformation of many contaminants in natural environments. Due to experimental and analytical challenges associated with complex environments, there has been a limited understanding of the reaction kinetics and mechanisms in actual environmental systems, and most of the studies so far have only focused on simple model systems. To bridge the gap between simple model systems and complex environmental systems, it is necessary to increase the complexity of model systems and examine both the involved interaction mechanisms and how the interactions affected contaminant transformation. In this Account, we primarily focused on (1) the oxidative reactivity of Mn- and Fe-oxides and (2) the reductive reactivity of Fe(II)/iron oxides in complex model systems toward contaminant degradation. The effects of common metal ions such as Mn2+ , Ca2+, Ni2+, Cr3+ and Cu2+, ligands such as small anionic ligands and natural organic matter (NOM), and second metal oxides such as Al, Si and Ti oxides on the redox reactivity of the systems are briefly summarized.

关键词: Iron oxides     manganese oxides     reduction     oxidation     complex systems     reaction kinetics and mechanisms    

The role of manganese oxides in the activation of peroxymonosulfate (PMS)

Jianzhi Huang, Huichun Zhang

《环境科学与工程前沿(英文)》 2019年 第13卷 第5期 doi: 10.1007/s11783-019-1158-8

摘要: Manganese oxides (MnOx) have been demonstrated to be effective materials to activate Oxone (i.e., PMS) to degrade various contaminants. However, the contribution of direct oxidation by MnOx to the total contaminant degradation under acidic conditions was often neglected in the published work, which has resulted in different and even conflicting interpretations of the reaction mechanisms. Here, the role of MnOx (as both oxidants and catalysts) in the activation of Oxone was briefly discussed. The findings offered new insights into the reaction mechanisms in PMS-MnOx and provided a more accurate approach to examine contaminant degradation for water/wastewater treatment.

关键词: Peroxymonosulfate     Manganese oxides     Catalyst     Oxidant    

标题 作者 时间 类型 操作

Review on research and application of mesoporous transitional metal oxides in water treatment

Minghao SUI, Lei SHE

期刊论文

Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental

Zhen MA, Bei ZHOU, Yu REN

期刊论文

Fluoride ions adsorption from water by CaCO enhanced Mn–Fe mixed metal oxides

期刊论文

Application of metal oxides-based nanofluids in PV/T systems: a review

期刊论文

Promotion of transition metal oxides on the NH

Weiman Li, Haidi Liu, Yunfa Chen

期刊论文

Modified iron-molybdate catalysts with various metal oxides by a mechanochemical method: enhanced formaldehyde

Xue Liu, Lingtao Kong, Shengtao Xu, Chaofan Liu, Fengyun Ma

期刊论文

Metal-organic framework loaded manganese oxides as efficient catalysts for low-temperature selective

Minhua Zhang, Baojuan Huang, Haoxi Jiang, Yifei Chen

期刊论文

Selective targeted adsorption and inactivation of antibiotic-resistant bacteria by Cr-loaded mixed metaloxides

期刊论文

Expression and clinical implication of PRL-1 and PRL-3 in transitional cell carcinoma of bladder

Bin HAO, Changwei LIU, Huixiang LI

期刊论文

Development of combined transitional pavement structure for urban tram track-road grade crossings

期刊论文

Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review

期刊论文

Robust optimization of the billet for isothermal local loading transitional region of a Ti-alloy rib-web

Ke WEI, Xiaoguang FAN, Mei ZHAN, Miao MENG

期刊论文

Multivalent manganese oxides with high electrocatalytic activity for oxygen reduction reaction

Xiangfeng Peng, Zhenhai Wang, Zhao Wang, Yunxiang Pan

期刊论文

Redox reactions of iron and manganese oxides in complex systems

Jianzhi Huang, Huichun Zhang

期刊论文

The role of manganese oxides in the activation of peroxymonosulfate (PMS)

Jianzhi Huang, Huichun Zhang

期刊论文